Mehr zu klassisch konstruiertem Berechnen?  

Für Lernende und Laien decken sich  die elementar, nur mit Kreis- und Gerade-Objekten konstruiertem Berechnungen mit ihrem  Erfahrungswissen. Heute helfen hier  besonders die  klassischen Konstruktionen mit dem Computer, die  im übertragenen Sinn  den uralten Auflagen genügen, und quasi nur mit einem Zirkel und und einem strichlosen Lineal auszukommen. Es sind  Sequenzen von Kreis- und Gerade-Objekten, die den betrachteten Rechenzusammenhang nachvollziehbar machen. Sie werden mit  dynamischen Zeichenprorammen (DGS-Softwareprogramme, beispielsweise Geogebra und andere), gezeichnet. Diese gezeichneten Kurven  sind  nur in Gedanken zusammenhängende Spurkurven. Real sind sie  immer nur endlich viele dicht benachbarte Punkte. Visuell und in gedanklicher Abstraktion werden diese nicht mehr als Punktekurve wahrgenommen, sondern als zusammenhängende Spurkurve = Strichkurve.  Bei konkreten Berechnungen und der reproduzierbaren Darstellung des Ergebnisses bestimmen  diese  besagten Punkte das Geschehen.
Über konstruierte  Zahlen = konstruierte Punkte
Wir können uns in der Ebene einen beliebig gegebenen Punkt vorstellen, der  Schnittpunkt zweier  orthogonaler Achsgeraden x und y ist. Weitere   davon ausgehend  "klassisch  konstruierte   Schnittpunkte"  werden in der Mathematik als "konstruierte Zahlen" verstanden.  Sie sind immer als Sequenz zusammenhängend gezeichneter Urkurven-Objekte von Kreis und Gerade   anschaulich nachvollziehbar. 
Das folgende Bild-Beispiel  zeigt, wie   eine    Folge von Punkten für die Rektifikation durch klassisches Konstruieren entsteht. Diese Konstruktion wird später noch mehrfach ausfühlicher beschrieben werden. Das Durchnummerieren der konstruierten Objekte macht das Nachverfolgen  der nacheiender konstruierten Objekte (Kurven und Schnittpunkte)  leichter.
Als ausgeführte Rechenoperationen kommen quasi nur die Ur-Operationen Doppeln und dessen Umkehrung das Halbieren (Anti-Doppeln) vor. Mit diesen Operartionen  wird eine   klassisch konstruierte Folge von Schnittpunkten konstruiert, die Endpunkte der immer mehr gerade gebogenen roten gleichlangen Kreisbögen  sind. Diese Bogenendpunkte konvertieren   gut erkennbar einem Grenzpunkt auf der y-Achse zu, der einen Grenzabstand zum Nullpunkt  von der  exakten   Länge des Kreisumfangs hat. Alle Punkte dieser Folge werden in der Mathematik als „konstruierbare bzw. konstruierte  Zahlen“ verstanden. Es ist hier leicht einzusehen, die Folge der Punkte ist endlos fortsetzbar. Die Änderung des Abstandes von Punkt zum  nächsten  Punkt  bzw. von Punkt zum Nullpunkt strebt dabei immer mehr der Grösse Null zu, ohne Null jemals zu erreichen.  
Für diese direkt wahrnehmbare  Grenzwertgrösse, die heute symbolisch mit 2π = Kreisumfang /Durchmesser beschrieben wird, gibt es keinen letzten Punkt und damit   keine abgeschlossene  Ergebnis-Darstellung als diskrete Zahl, die durch endlich viele  klassisch konstruierte Schritte erzeugt und dargestellt werden kann. Die Forderung nach einer diskreten Ergebnis-Darstellung (Zahl) einerseits und andererseits der Sachverhalt einer  nicht endenden Punkte-Folge bzw. Schritte-Sequenz  sind zueinander widersprüchlich.
Die Menge der konstruierbaren Punkte (konstruierbare Zahlen) füllt die unbegrenzte, aber auch die begrenzte Ebene niemals vollsständig aus.  Vom Prinzip her bleiben immer Lücken zwischen den konstruierten Punkten (=Raster-Punkte), egal wieviele diskret benennbare Schritte für die konstruierten Punkte schon ausgeführt sind. 
 

Über nichtkonstruierbare Zahlen = nichtkonstruierbare Punkte

"Kein  beliebig (zufällig) platzierter Punkt in der karthesischen Ebene  kann durch  eine  klassische Konstruktion   ohne Restfehler erzeugt oder ausgemessen werden. Diese beliebig (zufällig) platzierten Punkte  sind somit als "nichtklassisch konstruierbare  Punkte"  bzw. als  "nichtklassisch konstruierbare  Zahlen" zu verstehen.
Es sind, wie zuvor aufgezeigt,   prinzipielle  Gründe, warum   das Winkeldrittel, die Quadratseite und die Würfelkante in ihrer vollständigen Grösse nicht als klassisch konstruierbarer Punkt bzw. nicht klassisch konstruierbare Zahl dargestellt werden können. Irreführend wird es  hier allerdings, wenn aus diesem prinzipiellen  Sachverhalt der unvollständigen Ergebnis-Darstellung gefolgert wird, dass es hier für die Aufgabenlösungen keine exkaten  Sequenzenvon Kreis und Gerade ( Zusamenhänge) zur exakten Ergebniserzeugung geben würde. Das obige Bild zeigt, dies ist falsch und   irreführend. "Unmöglich"  suggeriert die Erwartung, für die betrachteten drei klassichen Aufgaben der Antike  würde  es keine klassisch konstruierten exakten Lösungsprozesse geben können, die mit endlich vielen Konstruktionsschritten vollständig beschrieben werden können. Wie obiges Bils zeigt, kann mit mit immer mehr betriebenem Aufwand  zu immer genaueren  Ergebnisdarstellungen gelangt werden.
                                           
                                 
 
 
  • Benutzer 48
  • Beiträge 106
  • Beitragsaufrufe 226189

Aktuell sind 83 Gäste und keine Mitglieder online